Contents

About This Guide ... vi
Where to Go for More Information ... viii

1. Introduction to Applications Manager ... 1
 1.1 Welcome to Applications Manager ... 2
 1.2 How Do I Get Started? ... 4
 1.3 Applications Manager Architecture ... 6
 1.4 Configuring Applications Manager for Your Enterprise 8
 1.5 Objects Reduce Development and Maintenance .. 10
 1.6 Overview of Applications Manager Objects .. 12
 1.7 Moving Around in the Applications Manager Client 16

2. Administration ... 19
 2.1 Overview of Applications Manager Administration ... 20
 2.2 Installing the Automation Engine, Agent, and Web Server 22
 2.3 Controlling Access to Applications Manager and its Objects 24
 2.4 Controlling Access to Hosts and Databases .. 26
 2.5 Managing Output ... 28
 2.6 Retaining Output Files and Operations Records .. 30
 2.7 Setting Automation Engine Options ... 32
 2.8 Moving Objects from One System to Another .. 34

3. Development .. 37
 3.1 Overview of Development in Applications Manager.. 38
 3.2 Creating Jobs to Run Programs and Scripts .. 40
 3.3 Creating Process Flows to Run a Series of Jobs ... 42
 3.4 Adding Dependencies to Jobs .. 44
 3.5 Passing Parameters to Programs and Scripts ... 46
 3.6 Adding IF-THEN Logic to Jobs and Process Flows ... 48
 3.7 Retrieving Values from Databases .. 50
 3.8 Scheduling Jobs and Process Flows ... 52
 3.9 Running a Custom or Third-Party Application ... 54
 3.10 Getting Notified when a Task Fails .. 56
 3.11 Detecting Failed Tasks by Scanning Output ... 58

4. Operations .. 61
 4.1 Overview of Operations in Applications Manager ... 62
 4.2 Monitoring the System ... 64
 4.3 Finding Out Which Tasks Will Run During Your Shift 66
 4.4 Troubleshooting Failed Tasks ... 68
4.5 Handling Task Exceptions .. 70
4.6 Taking Actions on Tasks ... 72
4.7 Viewing and Editing Task Details .. 74
4.8 Running Tasks Outside the Batch Cycle ... 76
4.9 Viewing and Printing Task Output .. 78
4.10 Controlling Task Priority and Load on the System .. 80
4.11 Preventing Applications Manager from Launching Tasks 82
4.12 Special Features of the Optional Graphical Analysis Package 84
About This Guide

The Applications Manager Getting Started Guide provides an overview of how operators, developers, and administrators use Applications Manager. By reading the appropriate topics in these chapters, you will learn how the various Applications Manager features relate to your job.

Welcome to UC4 Applications Manager. The Getting Started Guide is intended to help you learn your way around Applications Manager.

Text Conventions

The following text conventions are used throughout this guide:

- User interface field names, menu items, and window names are written in **bold**.
- File names and text within scripts are written in a **bold arial font**.
- Variable text is written `<within brackets>`. In the example below `<run ID number>` represents the actual run ID number of a requested job.

 If you submit a large process flow, the message will read, ‘Task submission in progress: Run ID = `<run ID number>`’ until all components of the process flow have been placed into the Backlog.

Cross-Reference Conventions

Cross-references to topics within a manual list the topic name and number as shown in the following example: For information on task details in the Backlog, see topic 4.7 Viewing and Editing Task Details.

Cross-references to topics in other Applications Manager manuals list the manual name as shown in the following example: For information on external predecessors, see topic 5.5 Working with External Predecessors in the Development Guide.
Unique Format

The manual is written as a series of topics, with all but a few topics presented on two facing pages. Illustrations are always displayed within the topic. These features make it easy to find where a topic starts and ends, and eliminate flipping pages to find an illustration.

1.1 Topic Heading

Summary paragraph set off by horizontal rules.

Illustration

In some rare cases a topic cannot fit onto two pages. To draw attention to these exceptions, we have included a continuation symbol...

...in the lower right corner of the second page.

Each topic begins with a heading followed by a summary paragraph set off by horizontal rules. The summary paragraph states the key concepts presented in the topic. If a topic has a subtopic, the subtopic is also presented on two facing pages. The topic heading is carried over to the subtopics, and is displayed in smaller letters above the subtopic heading.

To get a quick overview of a chapter, read the summary paragraph for each topic and look at the figures and figure captions.
Where to Go for More Information

The most up-to-date Applications Manager documentation is available in the online manuals. You can access the manuals from the Help menu in the Applications Manager client. PDF manuals are also available, but may not be as current. The knowledge base on the UC4 Support site provides write-ups to address problems and frequently asked questions. Additionally, support technicians are available based on your support contract.

Online Manuals

Complete online versions of the Applications Manager manuals are accessible by selecting Applications Manager Manual from the Help menu on the Applications Manager desktop or by clicking the Help button in various client windows. If you select Help while defining an object, Applications Manager opens the corresponding help topic. Occasionally new functionality is added to an Applications Manager version and bugs are fixed throughout each version’s life cycle. The most recent edits to the manuals are included in the online help of each build.

PDFs on the Support Site

PDF files for Applications Manager, Operations Manager and Rapid Automation agents are available on the UC4 Support site:

 http://support.uc4.com

PDF files are usually only generated when an application is first released. For the most up to date information, see the online help that ships with the application.

Knowledge Base

The knowledge base provides write-ups to address problems and frequently asked questions. It is searchable by error message, category, and text. The knowledge base is located on the UC4 Support site.

Applications Manager User Forum

The Applications Manager User Forum is a place where you can network with other Applications Manager users to trade tricks, tips and best practices. Check on the latest product developments, find out about new service offerings, and make new friends and connections. The forum is located on the UC4 Support site.
Contacting UC4 Support

If you encounter problems with Applications Manager, you can solve most problems using:

- The instructions provided in the Applications Manager manuals.
- The knowledge base available at the UC4 Support site.

You can access the UC4 Support site from the Applications Manager desktop by going to the Help menu and selecting Applications Manager Support.

If you are unable to resolve a problem, contact UC4 Technical Support. Except for emergencies, we suggest opening a support call from the UC4 Support site. All support calls received via the Web are reviewed within one business day.

UC4 Technical Support via phone is available from 6:00 A.M. to 5:00 P.M. Pacific Standard Time, Monday through Friday. Emergency (24 x 7) technical support is available. Contact your UC4 Account Manager if you are interested in purchasing emergency support.

You can contact UC4 Technical Support at:

United States

- **Web:** http://support.uc4.com
- **Telephone:** 1-877-277-9679
- **Email:** support@uc4.com
- **Fax:** 425-562-9350

Europe

- **Web:** http://support.uc4.com
- **Telephone:** +43 (2233) 7788-22
- **Email:** support@uc4.com
- **Fax:** +43 (2233) 7788-99

Before you call UC4 Technical Support, please have the following information available:

- Version number of Applications Manager you are running
- Operating system on which Applications Manager is running (e.g. Sun, Hewlett-Packard)
- Operating system host name
- Operating system login information for the Applications Manager account(s)
- Database login information for the Applications Manager account(s)
- Problem reference number if you are making a follow-up call on a previous problem

If you are calling UC4 Technical Support for the first time, please be prepared to provide your name, company name, location, and phone number.

The UC4 Technical Support representative will give you a problem identification (PID) number. Please write down the number. If you call again about the same problem, the number will allow the representative to more quickly access the history of the problem.
Where to Go for More Information
1

Introduction to Applications Manager

1.1 Welcome to Applications Manager ... 2
1.2 How Do I Get Started? .. 4
1.3 Applications Manager Architecture .. 6
1.4 Configuring Applications Manager for Your Enterprise 8
1.5 Objects Reduce Development and Maintenance ... 10
1.6 Overview of Applications Manager Objects .. 12
1.7 Moving Around in the Applications Manager Client 16
1.1 Welcome to Applications Manager

When fully implemented, Applications Manager can reduce IT operating expenses, speed the development process, and improve processes.

Congratulations! You have just purchased the most powerful and flexible process automation and task scheduling tool for distributed environments. You can use Applications Manager software to automate enterprise scheduling, integrate applications, and accelerate business processes. If you fully implement Applications Manager, you can reduce IT operating expenses, speed the development process, and improve business processes. The benefits are summarized in Figure A below.

![Figure A. Applications Manager automates scheduling, integrates applications, and accelerates business processes.](image-url)
Reduce Operating Expenses

Applications Manager includes features that enable you to approach full automation of operations. These features include predecessors, conditions, and substitution variables. Underlying these features is the ability of Applications Manager to make scheduling decisions based on queries of your corporate databases. Applications Manager is, in the true sense of the word, a “smart” scheduler. Full automation allows you to allocate operations resources to other critical tasks, reducing your operations expenses.

Speed Development

In a traditional development environment, scripts drive operations. Scripts incorporate the information required to run one or more programs on a set schedule, direct output, and handle exceptions. The problem with scripts is the time required to write and maintain them. For example, if an output device definition changes, you must change it in every script.

Applications Manager takes the individual components of a script such as programs, schedules, output devices, and variables, and lets you define them as discrete objects. You can then combine the objects in an unlimited number of combinations to handle your operations. There are two distinct advantages:

- You can change an object in one place, and have the changes roll over to every use of the object.
- You can quickly put objects together to build a process flow.

Improve Business Processes

There is a good possibility that many of the procedures you have in place today are based on the capabilities of older or legacy systems. Operations ran using scripts, heavily dependent on operator intervention. Developers wrote programs based on manual input from operators and users. With Applications Manager, many of these processes can be streamlined and automated.

Getting the Most Out of Applications Manager

For your company to get the largest return on its investment in Applications Manager, development, production, and operations must work together. As a group, you need to examine each of your current processes and how you can use Applications Manager to improve those processes. The result should be that development spends less time writing programs, production uses smart scheduling to reduce total execution time and balance load on servers, and operations focuses on monitoring and troubleshooting, rather than running tasks.
1.2 How Do I Get Started?

How you get started with Applications Manager depends on whether you are an Applications Manager administrator, developer, or operator.

With the power and flexibility of Applications Manager comes complexity. You will need to invest some time learning the product to reap the rewards. So, how do you get started? That depends on your role. Are you primarily an Applications Manager administrator, developer, or operator? Below we present Getting Started road maps for each major type of user.

Applications Manager Administrator Road Map

If you are the Applications Manager administrator, consider proceeding as follows:

- Finish reading this guide.
- Install the development instance of Applications Manager if it's not already installed. See the *Installation Guide* for detailed installation instructions.
- Read through the *Administration Guide*.
- Determine the initial set of user groups that you will create to control access to the functions in Applications Manager.
- Set up user logins for the initial group of people that will be using Applications Manager. The key users in the beginning will be the developers.

Developer Road Map

If you are a developer, consider proceeding as follows:

- Finish reading this guide.
- Get your user name and password from your Applications Manager administrator so that you can log into the Applications Manager client.
- Read through the *Development Guide*.
- Select one relatively simple series of processes that you want to automate in Applications Manager.
- Create jobs for each program.
- Create a process flow and add the jobs to the process flow. If you have been running programs with scripts, the process flow should replace the scripts.

Operator Road Map

If you are an operator, consider proceeding as follows:

- Finish reading this guide.
- Get your user name and password from your Applications Manager administrator so that you can log into the Applications Manager client.
- Read through the *User Guide*.
- Experiment with the *Explorer* window, running some of the pre-loaded jobs that ship with Applications Manager.
Reading this Guide

We included this as the first step in the road maps above, but we wanted to repeat the suggestion here. Continue reading this *Getting Started Guide*. Regardless of your role with Applications Manager, we recommend reading the entire *Getting Started Guide*. It will give you a good overview of all the tasks that should be performed to get the maximum benefit from Applications Manager. While you may not perform all the tasks, it will be useful for you to know what others are doing with the product.

Getting Training

Applications Manager offers an on-site three-day basic training class and self-training courses that orient you to the product and show you how to use the major features. These resources provide a fast and easy way to get started with Applications Manager. For more information on UC4 training, see the UC4 Web site.
1.3 Applications Manager Architecture

Applications Manager consists of an automation engine and local agent, database, RMI server, and clients. In larger systems, you may have remote agents as well.

The Applications Manager architecture has been designed to create a robust, scalable system. At a minimum, an Applications Manager installation includes the following components:

- Applications Manager automation engine and local agent
- Applications Manager Oracle database
- RMI server
- Apache Web Server
- Clients

In larger systems, you may also have one or more remote agents. Figure A shows the basic components.

![Figure A. An Applications Manager architecture diagram](image)

Automation Engine

The automation engine is the execution logic or brain of Applications Manager. It monitors job and process flow schedules and, at the appropriate time, sends them to the designated local or remote agent for execution. The automation engine communicates with the Applications Manager database, where all object definitions are stored.
Local Agent

At a minimum, a basic Applications Manager setup will include a single automation engine and its local agent. The local agent runs programs or executes scripts on the host machine where the Applications Manager automation engine is installed. It receives commands from the automation engine.

Applications Manager Database

Applications Manager uses object definitions stored in an Oracle database to give it an advantage over all other schedulers. When you create a job, process flow, or other Applications Manager object, the definition is stored in the Applications Manager Oracle relational database. You can then use the objects to build more complex objects. For example, you might define a database login, then assign that login to many different jobs. If the login changes, you change it in one place, and Applications Manager uses the new definition everywhere it is referenced. This object-oriented approach makes it easy to update and maintain the Applications Manager system.

Client

You access Applications Manager through a Java client. The client machine is the PC used to access the Applications Manager graphical user interface. This means you can access Applications Manager from any PC, Apple Macintosh, or Sun Workstation that has a Web browser. Client software provides access to all Applications Manager functions and features. The clients communicate directly with the Applications Manager automation engine. You can have any number of clients.

Remote Agent

In larger systems, you may have one or more Applications Manager remote agents on other servers. A remote agent must be installed on each machine where tasks are executed. Any number of remote agents can report to a single automation engine. Remote agents may run on UNIX, Windows, VMS, and OS/400 platforms.

The automation engine will schedule and control task execution on all the agents assigned to it. The agent monitors tasks until they complete.
1.4 Configuring Applications Manager for Your Enterprise

How you configure Applications Manager will depend on the size of your enterprise.

The size of your enterprise computing environment will dictate the Applications Manager configuration. To get you started, we will describe the typical configurations for small, medium, and large environments.

Small System

Even if you are installing Applications Manager on a small system, you will need the following components:

- Applications Manager automation engine and local agent
- Applications Manager Oracle database
- Clients

This configuration is illustrated in Figure A.

Medium System

If you are installing Applications Manager in a medium sized system, you will most likely add several Applications Manager remote agents to execute programs on other machines. This configuration is shown in Figure B.

Large System

In a large system, you may choose to install two or more Applications Manager automation engines. This is illustrated in Figure C.

An Applications Manager automation engine can process hundreds of thousands of tasks a day, so the choice to install more than one automation engine is usually not because of load. A more likely reason is that you are running Applications Manager in different data processing centers and do not want to depend on network connections between the automation engine and remote agents.

AppMaster, an Applications Manager add-on product, can monitor multiple automation engines. AppMaster is useful if you want to monitor your entire system from a single monitor.
Figure B. Medium Applications Manager configuration

Figure C. Applications Manager configuration for a system with multiple automation engines
1.5 Objects Reduce Development and Maintenance

Applications Manager replaces scripts with an object-oriented approach to process automation.

In a traditional operations environment, scripts drive process automation. Scripts incorporate the information required to run one or more programs, direct output, and handle exceptions. The problem with scripts is the time required to write and maintain them.

Applications Manager takes the individual components of a script such as program interfaces, database logins, queues, and output devices, and lets you define them as discrete objects. You can then combine the objects in an unlimited number of combinations to handle your process automation and operations. And you can do all of this without detailed knowledge of the operating systems. Another advantage is that when an object is changed, those changes roll over to every use of the object.

Figure A shows several program types, logins, queues, and output devices defined. These are combined to create jobs. The jobs are then combined to create process flows. For example, Job A in the figure uses the following objects:

- Program type: ORACLE
- Login: ORC_FIN
- Queue: BATCH
- Output Device: PAYROLL

The program specified for Job A is “GL Import.” This is the name of the program that will be run by this job, and is not an object in Applications Manager.

The “End-of-Period Close” process flow is made up of Jobs A through F. Notice that Jobs D and E can run concurrently, while Jobs A, B, C, and F run sequentially.

All of the objects defined in the illustration, including the jobs and process flow, can be reused in Applications Manager.

Reports

To help you review the objects that have been created, Applications Manager includes many object reports. The reports list all objects of each type, and in some cases, additional information about the objects.
Figure A. Applications Manager uses an object-oriented approach to replace the tedious tasks of writing and maintaining scripts.
1.6 Overview of Applications Manager Objects

You use a variety of objects to accomplish your work in Applications Manager.

The previous topic describes some of the objects you use to build jobs. This topic describes all of the objects available in Applications Manager. The objects are presented below in the same order they are listed in the sub-menús under **Object Admin** on the Applications Manager Desktop. Their organization is based on the users who are most likely to create each object.

Administration

- **Agent groups**—balance the load between agents on one or more machines.

- **Agents**—are instances of Applications Manager. An agent is installed on each machine where tasks are executed. An agent can be an automation engine’s local agent, a remote agent, or an application-specific agent such as Oracle Applications or PeopleSoft.

- **Logins**—allow operators and programmers to run programs that access a database or host without having to know the login and password.

- **Output devices**—define any output device including printers, faxes, and email. You can print to a single output device, or, through the use of distribution lists, multiple output devices.

- **Output groups**—define organizational classes of output devices. When you define Applications Manager output devices, you assign them to one or more output groups.

- **Output interfaces**—interface between Applications Manager and an output device.

- **User authorities**—control user access to Applications Manager windows and can give users add privileges for objects. You assign user authorities to your user groups.

- **User groups**—control access to all areas of Applications Manager. In a traditional system, you create groups of users, output devices, and applications. User groups can contain any combination of objects, and objects can be assigned to any number of user groups.

- **User options**—are the same options assigned to users, but as objects, they are assigned to a user group. When user options are assigned to a user group, all users in that user group will have that user option set to true for them. You cannot add, edit, or delete user option objects like other Applications Manager objects. You can only assign them to user groups.

- **Users**—control access to Applications Manager. You can assign names, access permissions, user options, and user groups to Applications Manager users.
Development

Applications—logically group jobs and process flows. Used to filter lists of jobs and process flows.

Calendars—define groups of days, such as holidays, that you can use for schedules. Schedules can run on, or skip, the days in a calendar.

Data types—specify the format for data passed to programs. They can include SQL statements that validate responses and allow you to pick from lists.

Environment variables—store values you define for one or more variables as a single Applications Manager object.

Jobs—are the basic building blocks in Applications Manager. For each program you want to run (such as FTP, application, or database load), you must create a job. A job contains all the information required to execute a program and handle its output. Jobs are run both individually and as components of Applications Manager process flows. Furthermore, a job can be a component of as many process flows as you wish. If you change a job definition, the change is applied to every process flow that includes it.

Libraries—define the path for the program that a job runs.

Message templates—specify text to include in notification output files. They allow the use of substitution variables and replacement values for variable text.

Notifications—send dynamic messages that are based upon a task’s status through email or any other defined output device.

Output scans—scan output for text strings that indicate if a task has failed or succeeded.

Process flows—are containers that include one or more components (jobs and other process flows), general scheduling information for the process flow, specific eligibility for each of its components, and conditions that must be met for each component to run.

Program types—define how programs accept input and handle output.

Reports—view reports for data in the Applications Manager database. Developers and administrators can create custom SQL reports in the Applications Manager client.

Substitution variables—store values that can be used in jobs and process flows. Applications Manager lets you use substitution variables, such as #today, in prompts and execution conditions assigned to jobs.
Operations

Queues—control the flow of tasks. All tasks must pass through an Applications Manager queue to be executed.

Thread schedules—are assigned to one or more queues or agents. Thread schedules define the number of concurrent tasks that can run through a queue or agent at different times of the day.
1.7 Moving Around in the Applications Manager Client

The Applications Manager desktop includes a work space for windows and taskbar buttons similar to the desktop used by many Windows applications. You can access all Applications Manager features and options using icons and menu items on the desktop.

When you log in to Applications Manager, you are taken to the desktop shown in Figure A. From the desktop, you can access all Applications Manager features and functions.

![Figure A. The Applications Manager desktop with two windows minimized.](image)

Opening Windows with the Toolbar

The toolbar at the top of the window displays a row of object icons. When you mouse over an icon, a ToolTip displays the name of the icon. Clicking an icon opens the corresponding window. You can also access the windows from the Operations and Object Admin menus. Users can choose which icons they want displayed in the toolbar.

Listings under the Activities menu open windows such as Explorer where you monitor the system, and Requests where you run ad hoc tasks.

Listings under the Object Admin menu open selector windows where you can view, add, edit, or delete definitions of objects such as jobs, process flows, and output devices.
Selecting Active Windows with the Taskbar

When you open a window, an icon is placed in the taskbar running across the bottom of the desktop. The taskbar gives you quick access to any open window, making it easy for you to switch back and forth while editing objects.

Using Selector Windows to Add, Edit, and Delete Objects

Selector windows are used to manage Applications Manager objects. They are displayed when you select an icon from the toolbar or an item from the Object Admin menu. There is a selector window for each type of Applications Manager object. From a selector window, you can add, edit, and delete objects. In Figure B, the New button is selected on the Queues Selector window and a new queue is being defined.

![Figure B](image)

Figure B. To add a new object or edit or delete an existing object, click the appropriate button.

Jumping to Selector Windows from Fields

In many object definitions, you will see icons at the end of the data entry fields. For example, in Figure B, there is a schedule icon at the end of the Thread Schedule field. Clicking on this icon will open the Thread Schedules Selector window where you can create a new thread schedule or edit an existing thread schedule.

Filtering Selector Window Lists

If you create a large number of a particular type of object, such as jobs, you can filter the list displayed in the selector window by typing the first few letters of an object in the Search field. This is much faster than scrolling down the list. The Search field supports regular expressions and Oracle wildcards (such as %, _, and .).
Administration

2.1 Overview of Applications Manager Administration ... 20
2.2 Installing the Automation Engine, Agent, and Web Server 22
2.3 Controlling Access to Applications Manager and its Objects 24
2.4 Controlling Access to Hosts and Databases .. 26
2.5 Managing Output ... 28
2.6 Retaining Output Files and Operations Records .. 30
2.7 Setting Automation Engine Options ... 32
2.8 Moving Objects from One System to Another ... 34
2.1 Overview of Applications Manager Administration

If you are an Applications Manager administrator, you will be responsible for maintaining the Applications Manager automation engine and agents, and controlling access to Applications Manager and the various objects.

If you are an Applications Manager administrator, you will be responsible for ensuring the system is up and running, and that users can access the system. How much more you are responsible for will depend on the structure of your IT shop. At the very least, you will probably be expected to:

• Ensure that the Applications Manager automation engine, agents, RMI server, and Web server are up and running.
• Provide Applications Manager user IDs and logins to developers, production analysts, operations personnel, network administrators and database administrators.
• Set the automation engine options.

You may also be responsible for one or more of the following:

• Defining host and database logins
• Defining output devices
• Managing retention of Applications Manager records and report output
• Migrating Applications Manager objects between development, test, and production instances

Each of these responsibilities is described in this chapter.
2.2 Installing the Automation Engine, Agent, and Web Server

The Applications Manager installation program installs the Applications Manager automation engine and its local agent, the RMI server, and optionally the Apache Web server.

The Applications Manager installation program can install a complete working instance on a single machine. The instance will include the following:

- Applications Manager automation engine
- Applications Manager local agent
- RMI (Remote Method Invocation) server to support the automation engine
- Apache Web server (or equivalent server) to “serve” the Java client to a PC or other workstation

Acceptable Configurations

All components can reside on a single machine, or they can be spread across several machines. Figure A shows all components on a single machine.
Figure B shows a more likely scenario where the Applications Manager automation engine, local agent, RMI server, and Apache Web server are all on one machine, and the Applications Manager database is on another machine.

![Applications Manager configuration with the database on a separate second machine]

Applications Manager Database

Applications Manager uses an Oracle database to store all object definitions. Before installing Applications Manager, you must set up the Applications Manager database, giving it a specific set of grants. This is a relatively easy procedure that your database administrator should be able to perform in a few minutes. The required grants are documented in the *Installation Guide*.
2.3 Controlling Access to Applications Manager and its Objects

Using the Applications Manager security features, you can control access to Applications Manager and the objects within it.

To access Applications Manager, each user must be assigned a user login. Usually the Applications Manager administrator is in charge of creating the user logins. The user login window is shown in Figure A.

The login allows a user to enter the Applications Manager client. Once the user is in the client, access to objects and to different areas of the product, often referred to as managers, is controlled by user groups.

User Groups Are Important

User Groups control access to the Applications Manager and its objects. When you create a user login, you assign one or more user groups to the user. You can think of user groups as containers. After creating a user group, you add objects and users to the user group. Users have access to all the objects in the container.

It’s important for you to give some thought to the user groups that will best serve the security needs of your organization. For example, if you are a very small shop, you may need only a few user groups such as administrator, developer, and operations. If you are a large shop, you may want to use a more extensive set of user groups such as: administrator, financial applications developer, sales inventory application developer, customer relations application developer, network administrator, database administrator, operator, and production analyst. Each user group would give access to different parts of Applications Manager and to a different set of objects.

The top row in Figure B illustrates three typical user groups: programmer, operator, and end-user. Figure B also shows two additional programmer user groups: edit and non-edit. The two user groups make it possible to give programmers read-only access to some objects, and edit access to other objects.
The programmers would be assigned to both user groups. For example, you might give programmers read-only access to:

- Objects that ship with the product (such as system jobs and process flows).
- Objects that might be created by an Applications Manager administrator (such as output devices).
- Objects that might be created by a database administrator (such as logins).
- Certain objects such as queues (to give access to the Explorer window).

On the other hand, you would give programmers edit access to the jobs and process flows that they create.

By having the two user groups, you have the flexibility to give a group of users the access they require to accomplish their job. You would most likely want an edit and non-edit user group for operators as well. End-users may only require a single non-edit user group because they would not be creating objects.

DBA User Group

When you first install Applications Manager, there is one user group called “DBA” that is assigned to the default user. The “DBA” user group gives the default user access to all functions and objects in Applications Manager. By logging in as the default user (see the *Installation Guide* for the default user name and password), you can then define additional users.
2.4 Controlling Access to Hosts and Databases

Using the Applications Manager security features, you can control access to hosts and databases.

A common security breach in traditional operations environments is the need to hard code host and database passwords into scripts used to run tasks. For example, if you are running an FTP task from a script, you have to include the target host login and password. Or if you are running a program that accesses a database, you have to hard code the database login and password. Applications Manager solves this problem with login objects.

Logins Window

In Applications Manager, you can define host and database logins using the Logins window. An example database login is shown in Figure A. An example host login is shown in Figure B.

![Figure A. Database login](image)

![Figure B. Host login](image)

Login Objects Used by Developers

The advantage of the Applications Manager logins is that developers can use them without having to know the host or database password. They simply select a login from a drop-down list box.
For example, when a developer defines a job to run a task that must access a database, the developer can select a database login as shown in Figure C.

You can control the logins that are displayed in the list box by using Applications Manager user groups. Only the logins that are included in a user group assigned to the developer will be displayed. Security is maintained, and the developer’s task is made easier.

Encrypted Passwords

In both host and database logins, the login names are displayed as plain text, but the passwords are encrypted. The only person who knows the password is the person who entered it in Applications Manager. This ensures a high level of security.

Reduced Maintenance

By defining the database and host logins as objects in Applications Manager, you can update a login in one place and have that change take effect everywhere the login is used. This greatly reduces your maintenance time.
2.5 Managing Output

Applications Manager can capture output from any task it runs, send the output to any type of output device, and make the output available for viewing online through the Applications Manager Java client.

Applications Manager includes a built-in output distribution function that can send output to almost any type of output device including traditional printers, fax machines, plotters, and email. But Applications Manager also can make the output available for online viewing directly from the Applications Manager client.

Output Device Objects

For Applications Manager to send output to an output device, you must define that output device as an object in Applications Manager. When you have defined the output device, you can assign it to one or more Applications Manager jobs. If the output device changes, you only need to update the output device definition in Applications Manager in one place.

Talking to Output Devices

When Applications Manager sends output to an output device such as a laser printer, it uses an output interface script. The script builds the appropriate print command for the device. Writing the scripts is straightforward and is typically handled by your network administrator.
Applications Manager ships with several output interface scripts already defined, including output interfaces for UNIX, Linux, and Windows. Below is an example of the UNIX script that ships with Applications Manager:

```
file=$1
shift
eval "lp $* $file"
exit $? 
```

As an Applications Manager administrator, you may define output devices in Applications Manager, or you may provide access to a network administrator to define the device.

Online Viewing

When Applications Manager runs a task, such as an Oracle Applications or PeopleSoft task, it builds the appropriate commands using an Applications Manager program type interface script. Also incorporated in the script is the ability to register the output from the task and make it available instantly for online viewing. This capability is an integral part of Applications Manager.

When determining how to make the best use of Applications Manager output management, you should examine this ability to view output online and how it might affect how you currently distribute output.

Applications Manager interface scripts are available for the most popular enterprise applications, and UC4 Global Services Offerings services can create custom scripts for almost any application.
2.6 Retaining Output Files and Operations Records

The Applications Manager SYSTEM process flow deletes outdated output files and clears old records from the history tables.

In today’s post-Sarbanes/Oxley environment, retention policies are more important than ever for audit purposes. You must be able to show that the tasks in a process flow executed successfully and produced the desired output. As the Applications Manager administrator, you may be responsible for assuring that output files and history records are being retained for the required length of time.

SYSTEM Process Flow

Output files and history records are purged by the Applications Manager SYSTEM process flow that ships with the product. The process flow includes two jobs:

- DELDEFAULT: purges output files based on settings in the job definition
- HISTORY_PURGE: purges old history files based on parameters set in the HISTORY_PURGE job

By default, the SYSTEM process flow runs every day at midnight. You can change the schedule to accommodate your operations environment.

Output File Retention Set at the Job Level

In Applications Manager, when a developer defines a job to run a program, the developer can choose how long to retain the output files generated by the task. On the Output tab of the Jobs window, the developer can set:

- Retention days.
- Maximum number of revisions.

These two settings work together to determine how long output files are retained. Note that Applications Manager will use the maximum number of revisions only if that option is set for the automation engine.
History Records Retention

History records are displayed in the Explorer window in the History pane as shown in Figure A. How long these records are available for viewing in the History pane is determined by the prompt value set for the HISTORY_PURGE job in the SYSTEM process flow.

![Figure A. History records are displayed in the History pane of the Explorer window.](image)

Archiving Records

The SYSTEM process flow purges output files and History records, but it does not archive the files or records. If you wish to perform archive functions, consider building an archive process flow that executes the functions. For example, you could create a process flow that prints a report of the History records, moves the records to an archival database, and moves the output files to an archival directory. This archival process flow could be scheduled to run before the SYSTEM process flow.

Note: You should never modify the SYSTEM process flow because it is reinstalled every time you upgrade or reinstall Applications Manager. If you want to modify the SYSTEM process flow, copy it to another process flow, then modify the copied process flow and run it instead of the SYSTEM process flow.
2.7 Setting Automation Engine Options

You can control the behavior of the Applications Manager automation engine by setting the automation engine options.

When you install Applications Manager, there are a number of options set for the automation engine by default. These options control a wide range of behaviors. The default settings represent the most common settings used by Applications Manager customers.

If you want to change these options, you can do so from the Automation Engine Options tab for the automation engine in the Agents window shown in Figure A.

![Figure A. The Automation Engine Options tab of the automation engine and its local agent](image-url)
2.8 Moving Objects from One System to Another

When you want to move Applications Manager objects from one system to another, you use the Export and Import features. When importing, you can map objects, including objects that were not exported. You can save the map file and use it for other imports.

If you are like many Applications Manager customers, you will maintain development, test, and production instances of Applications Manager. This raises the issue of how to move Applications Manager objects created in the development instance to the test and production instances. Migration from one machine to another is one of the most error-prone tasks in the IT environment. Applications Manager provides export and import utilities that make the process easy and reliable.

Moving Applications Manager objects from one instance to another is a simple three-step process:

1. Export the objects from the source machine.
2. Move the export file to the target machine.
3. Import the objects to the target machine.
Exporting Objects

To export objects, use the **Exports** window and build an export list. The list can include any number of objects. You can export all Applications Manager objects except agents, agent groups, logins, and users. When you select an object, Applications Manager automatically identifies any supporting objects. For example, if you include a job, Applications Manager identifies any output devices assigned to the job and gives you the opportunity to add the output devices to the export list. You can save the export list and reuse it the next time you want to export objects.

After building the export list, you run the export program. The program generates the export file.

Moving the Export File

After generating the export file, you transfer the file from the source machine to the target machine.

Importing Objects

On the target machine, use the **Imports** window to import the objects from the export file. When you load the file into the **Imports** window, support objects such as agents, agent groups, logins, and users that could not be included in the file will be flagged. You can then map these objects to corresponding objects on the target machine.

For example, suppose you are exporting from a development machine to a test machine. An exported job was defined to run on the DEV agent. On the test machine, the corresponding agent is TEST. You simply map the DEV agent to the TEST agent.

When you have completed mapping the objects, you can save the map for repeated use, ensuring consistency.

To complete the process, you run the import. The objects are added to the target instance.
3

Development

3.1 Overview of Development in Applications Manager ... 38
3.2 Creating Jobs to Run Programs and Scripts .. 40
3.3 Creating Process Flows to Run a Series of Jobs ... 42
3.4 Adding Dependencies to Jobs .. 44
3.5 Passing Parameters to Programs and Scripts .. 46
3.6 Adding IF - THEN Logic to Jobs and Process Flows .. 48
3.7 Retrieving Values from Databases ... 50
3.8 Scheduling Jobs and Process Flows .. 52
3.9 Running a Custom or Third-Party Application ... 54
3.10 Getting Notified when a Task Fails ... 56
3.11 Detecting Failed Tasks by Scanning Output .. 58
3.1 Overview of Development in Applications Manager

As a developer, you will create objects used to define jobs and run tasks.

When we talk about development in Applications Manager, we are referring to the creation of jobs to run tasks, and the addition of jobs to process flows. If you are a developer, you will most likely:

- Create jobs to run programs and scripts.
- Create process flows to run a series of jobs.
- Add dependencies to process flow components to establish the correct execution order in process flows.
- Define job parameters.
- Add IF - THEN logic to jobs and process flows to ensure the correct conditions exist before they execute.
- Automate retrieval of values from databases to eliminate data entry errors.
- Schedule jobs and process flows to automate production.

Objects

As you build jobs and process flows, you will use a number of objects including:

- Applications to categorize jobs and process flows
- Libraries to specify paths to programs
- Program types to interface with programs and applications
- Database and host logins
- Substitution variables to store values used in job parameters
- Queues to control load on your systems
- Output devices to distribute output

There are many other objects that you may use, or that may be used by the Applications Manager administrator or operators.

Naming Conventions

You should put some thought into naming conventions for your objects because you cannot readily rename objects in Applications Manager. This is not a problem if an object is not used in very many places because you can copy the object, give it a new name, then replace the old object with the new object. But if you have used the object in many places, copying and replacing is not practical.
Replacing Scripts with Jobs and Process Flows

One of the greatest returns on your investment in Applications Manager can be realized by replacing your scripts with Applications Manager jobs and process flows. Long scripts that have been used to run nightly batch processing can be broken up, and each program run by the script can be replaced by a job. Those jobs can then be combined to create a process flow that duplicates, or improves, the job flow in the original script. Elements in the script that handle output should be replaced by Applications Manager output devices.

If the scripts require manual intervention by operators, every attempt should be made to use Applications Manager predecessors, conditions, and substitution variables to automate these manual steps. Predecessors and conditions can ensure that the jobs in a process flow execute in the correct sequence and that the correct conditions have been met for the tasks to execute successfully. Substitution variables can be used to automatically enter values for parameters where the values are retrieved from your corporate database at the time of execution. These three features (predecessors, conditions, and substitution variables) give you the power to automate operations to a greater extent than is possible with any other distributed scheduler.

Scheduling

Depending on the size of your organization, you may be responsible for scheduling jobs and process flows, or this responsibility may fall to production analysts. Either way, Applications Manager has an extensive set of features for scheduling jobs and process flows. You should be able to create schedules that closely match your corporate data processing procedures.
3.2 Creating Jobs to Run Programs and Scripts

A job is an object you create to run a program or script in Applications Manager. After you have defined a job, you can run it by itself on an ad hoc basis, schedule it to run automatically, or add it, along with other jobs, to a process flow.

A job is an Applications Manager object that specifies all the information required to run a program or script. Jobs are among the most important objects in Applications Manager. After you have defined a job, you can:

• Run the job manually from the Requests window.
• Run the job on a set schedule.
• Add the job to one or more process flows.

When Do I Need to Create a Job?

You need to create a job when you want to run a program, application, or script from Applications Manager. For example, you would create a job to:

• Perform a data load.
• Run an Oracle GL import job.
• Run a UNIX script.
• Execute an FTP.
• Run a report.

Basic Information Required to Create Jobs

The basic information required to create a job is listed below:

• The name of the program or script to be run
• The name of the program type that will build the appropriate command to run the program or script
• The name of the Applications Manager agent where the program or script will be run
• If required, a host or database login
• If required, prompts to define the parameters required to run the program or script
• The output device or devices that will receive the output generated by the program or script
The General tab for a sample job is shown in Figure A. Note the additional tabs where you would enter other information such as output devices, logins, schedules, prompts, predecessors, and conditions.

![Figure A. The General tab for jobs](image)

The Role of Program Types Scripts

You must assign a program type to every job you create. Behind the program type is an interface script that tells Applications Manager how to run the job. The script:

- Builds the command that executes the program.
- Passes any parameters required to run the program.
- Detects errors generated by the program.
- Registers the output generated by the program so it can be printed by Applications Manager and viewed online through the Applications Manager client.
- Terminates the program.

Applications Manager ships with, or has available as extensions, a number of program types and matching program type scripts including:

- UNIX and Windows shell scripts
- Java programs
- SCT Banner
- SQL*Plus programs
- Oracle
- PeopleSoft

If you need to run a custom application or a third-party application, you will need to create a new program type and matching program type script. The Development Guide manual gives detailed information on creating program type scripts. UC4 also offers consulting services to create the scripts.
3.3 Creating Process Flows to Run a Series of Jobs

Process flows are used to execute jobs in a sequence. Process flows replace scripts in a traditional operations environment.

If you are using scripts to run your nightly batch processing, review those scripts to see how you can convert them to jobs and process flows. Long scripts that have been used to run nightly batch processing can be broken up, and each program run by the script can be replaced by a job. Those jobs can then be combined to create a process flow that duplicates, or improves, the job flow in the original script.

If the scripts require manual intervention by operators, every attempt should be made to use Applications Manager predecessors, conditions, and substitution variables to automate these manual steps. Predecessors and conditions can ensure that the jobs in a process flow execute in the correct sequence and that the correct conditions have been met for the tasks to execute successfully. Substitution variables can be used to automatically enter values for parameters where the values are retrieved from your corporate database at the time of execution. These three features (predecessors, conditions, and substitution variables) give you the power to automate operations to a greater extent than is possible with any other distributed scheduler.

Example Process Flow

For example, suppose you have a script that executes the following steps:

1. Purge data
2. FTP data from mainframe
3. Load data
4. Cleanse Data
5. Run three reports against the data
6. Perform a GL import
7. Perform a GL post

In Applications Manager, you might create a process flow that would look like Figure A. Notice that each step is completed sequentially. The three reports are run as a sub process flow, and are processed simultaneously. However, the GL_IMPORT step will not execute until the three reports have run.

Process Flow Size

How large should you make a process flow? There are no hard and fast rules. A process flow may contain up to 999 components. A component can be a job or another process flow. When you add a process flow to another process flow, it is considered a sub process flow. Sub process flows can include their own sub process flows. While you can sub process flow to 32 levels, three levels of sub process flows is sufficient for most implementations.
Below are some guidelines to help you decide how large to make a process flow:

- If your entire nightly batch processing centers around one application, and each job is tightly integrated with the other jobs, you could run your entire nightly batch processing from one single process flow.
- If you have several processing runs that deal with different applications with no interaction, you might consider creating a process flow for each application. Each process flow could be scheduled to run at a set time during the batch processing window.
- If you are running nightly batch processing that involves multiple applications with many interrelated jobs, you might create a number of sub process flows, then add those sub process flows to one main nightly batch processing process flow scheduled to run at the beginning of your batch processing window.
- If you are modeling a process flow that is used in several different batch processing sequences, you may want to create the flow as a separate process flow that you can then add to several other larger process flows. This takes advantage of the fact that process flows are reusable objects in Applications Manager. If the process flow changes, you can make edits to the process flow in one place and they will take effect everywhere the process flow is in use.

To a great extent, whether you use a few large process flows, or create many smaller process flows will depend on the preferences of your operations group. Applications Manager can accommodate both approaches.

Managing Large Process Flows

If you choose to create large process flows, sub process flows and groups can help you manage them. Both sub process flows and groups can be expanded and collapsed to show and hide their components. Collapsing sub process flows and groups can make it easier to see the big picture in a large process flow. Figure B shows a collapsed sub process flow called DATA_REPORTS.

In contrast to sub process flows that are independent objects added to a process flow, groups are created within a process flow from components that already exist in the process flow. Groups are used to manage collections of components. For example, groups can display parallel flows in a process flow more clearly. Groups, like sub process flows, can be collapsed to save real estate in the process flow window. Unlike sub process flows, groups are not independent objects. They exist only with the process flow where they are created and you cannot copy or reuse them.
3.4 Adding Dependencies to Jobs

To determine the order of execution in a process flow, you add predecessor links between the components in a process flow. You can also add dependencies to standalone jobs. Basic predecessor links are automatically created when building process flows. Additional predecessor features allow for greater complexity and versatility.

In Applications Manager, execution order of components in a process flow is determined by dependencies. You define dependencies by adding predecessor links between components. By default, when you add components to a process flow using the drag-and-drop method, Applications Manager automatically adds success predecessor links between the components. The result is that you can quickly and easily build simple process flows similar to the one shown in Figure A.

![Sample process flow](image)

Figure A. Sample process flow

You also can add predecessor links to standalone jobs. In this case, the links identify other tasks that must complete before the standalone job will execute.

Internal vs. External Predecessor Links

The process flow shown in Figure A relies on internal predecessors links, which means all links are contained within the parent process flow, in this case NIGHTLY_PRODUCTION. But what if a step in this process flow was dependent on a step in another process flow completing successfully? You would need to create an external predecessor link as shown in Figure B. The link goes from the FTP job in the NIGHTLY_PRODUCTION process flow to the CK_DISK job in the External References box.

![External predecessor link](image)

Figure B. External predecessor link
Types of Predecessor Links

There are several types of internal and external predecessor links. They are described briefly below.

<table>
<thead>
<tr>
<th>Link Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Success (default)</td>
<td>The predecessor component has completed successfully. Note: The Applications Manager success logic is quite sophisticated; there are other scenarios which cause success requirements to be satisfied. See the Development Guide for more details.</td>
</tr>
<tr>
<td>Started</td>
<td>The predecessor component has started or has been skipped in this run of the process flow.</td>
</tr>
<tr>
<td>Complete</td>
<td>The predecessor component has completed processing. The actual status does not matter.</td>
</tr>
<tr>
<td>Success since last run</td>
<td>The predecessor component has completed successfully since the last time the job ran. This link type is only available for external predecessors. It is useful for process flows that run multiple times a day.</td>
</tr>
<tr>
<td>Success (skip on failure)</td>
<td>The task runs if the predecessor runs successfully, but skips if the predecessor fails. This type of predecessor is often used for branching logic along with the Failure (skip on success) predecessor described below.</td>
</tr>
<tr>
<td>Failure (skip on success)</td>
<td>The task runs if the predecessor fails, but skips if the predecessor runs successfully. This type of predecessor is often used for branching logic along with the Success (skip on failure) predecessor described above.</td>
</tr>
<tr>
<td>Success only when FINISHED</td>
<td>The predecessor runs and goes into a FINISHED status. This link type is only available for external predecessors. If the external predecessor is deleted, it will not satisfy the predecessor link requirements.</td>
</tr>
<tr>
<td>Failure</td>
<td>The predecessor fails.</td>
</tr>
</tbody>
</table>

Note that predecessor logic in Applications Manager can be complex. You should thoroughly study the predecessor chapter in the *Development Guide* before beginning to create process flows.
3.5 Passing Parameters to Programs and Scripts

Prompts pass parameters to a program or script run by a job.

If you are creating an Applications Manager job that runs a program or a script that takes one or more parameters, you must create prompts for the job. For example, the `employees.sql` script shown below runs a report of employees for a department. The script has one variable `dept_name` shown in bold.

```sql
set verify off
set feedback off
set termout off
spool &so_outfile
  column ename heading 'Employee|Name'
column dname heading 'Dept|Name'
select emp.ename, dept.dname
  from emp, dept
  where dept.dname = '&dept_name'
  and emp.deptno = dept.deptno;
spool off
```

While creating the job to run this program, you would include a prompt where the department name could be entered. Figure A shows an FTP job that takes seven parameters:

![Figure A. Prompts are used to pass parameters to a program or script.](image)

Types of Prompts

There are four types of prompts you can create. The type of prompt determines how the information is entered. The different types of prompts are described below.

<table>
<thead>
<tr>
<th>Prompt Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>The prompt has a default value that users are not allowed to change. Use this type of prompt when the parameters for a job do not change frequently.</td>
</tr>
<tr>
<td>Fill-in</td>
<td>The prompt may or may not have a default value. Users are allowed to change the value. Use this type of prompt when you do not want to retrieve the value from a database.</td>
</tr>
</tbody>
</table>
Sources for Prompt Values

When you define a prompt for a job, there are several ways values can be entered for the prompt:

- When you define the prompt, you can enter a default value. The default value will be used whenever the job is run if no other value is supplied. For most jobs that will be included in a process flow, you will want to enter a default value.

- When you define the prompt, you can enter an Applications Manager substitution variable as the default value. The substitution variable pulls a value from a database at the time the job is executed. For example, a program may require today's date as one of its parameters. You can enter the substitution variable #today as the default prompt value. When the job is run in a process flow or from the Requests window, today's date will automatically be filled in for the prompt. This is a very powerful feature in Applications Manager that makes full automation of your process flows an attainable goal.

- If you run the job from the Requests window, you can enter a value for the prompt. If you have end-users running tasks from Applications Manager, being able to enter values allows them to customize the tasks. You can even define the prompt using a SQL query that will pull a list of values from a database table and present them to a user when they run the job from the Requests window. For example, a user could run a sales report and select their region from a list. By selecting values from a list, you eliminate the possibility of a data entry error.

- If you add the job to a process flow, prompt values for the job can be retrieved from the process flow header using special numbered substitution variables. This means you can enter one set of values in the process flow header, run the process flow using those values, then enter a second set of values and run the process flow again. The entire process can be automated so that the sets of values are pulled from rows in a database table. The process flow is run once for every row in the table. This technique is particularly useful for running Oracle’s Multi-Org.
3.6 Adding IF - THEN Logic to Jobs and Process Flows

Conditions control the execution of jobs, process flows, and process flow components by taking an action based on an event. Conditions can be evaluated before, during, and after a task executes, or after a task is deleted.

One of the way Applications Manager is a truly intelligent scheduler is by using conditions. Conditions are “if... then” statements that you can add to jobs, process flows, and process flow components to control execution of those objects. Some examples include:

- If JOB_ABC has completed successfully, run JOB_XYZ.
- If the current time is later than 4:00 A.M., put JOB_ABC on hold and notify operations.
- If there are fewer than 100 transactions in the sales database, delay sales processing for 30 minutes and check again.
- If a task has been waiting in the Backlog for more than 30 minutes, switch it to a higher priority queue.

You can add as many conditions to a job or process flow as you wish. If you have not added conditions to the jobs in a process flow, the jobs will execute sequentially based solely on the predecessor links.

Defining a Condition

To define a condition, you select the timing, the type of condition, the test, and the action. An example of a CURRENT TIME condition is shown in Figure A.

In the example in Figure A:

- The condition is checked BEFORE the task is run.
- The condition type is CURRENT TIME.
- The test checks to see if it is after 4:00 A.M.
- The action taken is to put the job on hold.

Figure A. An example of a condition that checks the current time
When to Use Conditions

Conditions are an optional feature in Applications Manager. You can create a process flow and add jobs to it, and the jobs will execute in the order they are displayed in the process flow. Schedule the process flow to run on certain days at a specific time, and you are ready to go. It’s quick and easy to build and schedule such a process flow, and it may be all you need.

But you will want to add conditions to the components in a process flow if you want to synchronize the process flow with events taking place outside of the process flow. For example:

- Run a process flow a second time when a certain job in the process flow completes. In other words, the two runs of the process flow will overlap, with the second run starting based on completion of a specific job in the first run.
- Run a process flow only when a certain number of records exist in a database table.
- Run a process flow at 10:00 P.M., but ensure that a specific component in the process flow does not run until after midnight.
- Run a process flow only if the job XYZ completed within the last two days.

Jobs, Process Flows, and Process Flow Components

You can add conditions to standalone jobs, to process flows, and to jobs and process flows within a process flow. This gives you a great deal of flexibility in controlling execution of tasks in Applications Manager.

Before, During, and After Conditions

You can add conditions that are checked before, during, or after a process flow or component executes. For example, for one job in a process flow you might create:

- A BEFORE condition that checks if a specific data file exists.
- A DURING condition that sends an email notification to operators if the task is running too long.
- An AFTER condition that changes the status from FINISHED to FINISHED WITH ERRORS based on the return code.

You can add as many conditions as you need to control the execution of jobs and process flows.
3.7 Retrieving Values from Databases

Substitution variables store values that can be used in prompts and conditions in jobs and process flows. The values can be stored in a database table or generated by a SQL statement at the time a task is submitted.

Imagine if you could eliminate data entry errors by automatically retrieving parameter values from your corporate database. And what if you could control the execution of tasks based on information stored in your corporate database. Applications Manager substitution variables make it possible to do both.

What are Substitution Variables?

In Applications Manager, substitution variables are objects that store values. The values can be fixed or dynamic. Dynamic variables retrieve values from a database using a SQL statement. For example, the substitution variable shown in Figure A uses a SQL statement to retrieve the number of employees listed in the EMP table. The substitution variable is called #count_employees.

Figure A. A dynamic substitution variable
Eliminating Data Entry Errors

Data entry errors are some of the most common mistakes made in operations. In Applications Manager, you can eliminate these errors by using substitution variables to enter parameter values. For example, Figure B shows a report that must be run using the first and last day of the month as its parameter values. The substitution variables #yesterday and #today are being used to fill in the start and end dates.

Controlling the Execution of Tasks

Once you define a substitution variable, you can use it in a condition statement to control the execution of a task. In Figure C, a condition statement delays the execution of the EMPLOYEES_REPORT job 30 minutes every time the #count_employees substitution variable returns a value less than 50. When the value exceeds 50, the job executes.
3.8 Scheduling Jobs and Process Flows

With Applications Manager, you can create schedules to run jobs and process flows that account for days of the week, specific days of the month, days in a calendar, workdays, and fiscal calendars.

After creating jobs and process flows, you can schedule them to run automatically. You can schedule individual jobs as well as process flows. Applications Manager can accommodate just about any scheduling requirement from the simplest to the most complex. For example:

- Run Monday through Friday at 1:00 A.M and 2:00 P.M.
- Run once an hour on the half-hour from 8:00 A.M. to 5:00 P.M.
- Run on the last Friday of the month.
- Run only on holidays.
- Run Monday through Friday except on holidays.
- Run on the first workday of the month based on a fiscal calendar.

You create schedules for each job and process flow that you want to automate. Unlike the other objects in Applications Manager, schedules belong to a specific job or process flow and cannot be assigned to other jobs and process flows.

Scheduling Intervals

When you create a schedule, you can choose from a wide range of units as shown in Figure A.

Figure A. You can choose from a wide range of scheduling units.
Multiple Schedules

You can create more than one schedule for a job or process flow. For example, if you want a process flow to run Monday through Friday at 1:00 A.M., and Saturday at 8:00 A.M., you can create two schedules. You can review the schedules using the 12 Month Display shown in Figure B.

Scheduling with Calendars

You can build calendars in Applications Manager and use them as run dates or as skip dates. For example, you can create a calendar of holidays and use it as a run calendar or as a skip calendar. Unlike schedules, calendars can be reused with any number of jobs and process flows.

You can build calendars one day at a time, or use rules. Rules are useful when you want to add dates such as the 5th work day of the month, or the first or last workday of the month.

Along with traditional calendars, you also can create fiscal calendars to better match your corporate business model.

Setting Eligibility in Process Flows

When you schedule a process flow, the entire process flow is launched at the specified date and time. However, you can choose not to run individual components in a process flow on specific days of the week, to run only on dates in a calendar, or to skip on dates in a calendar. This provides an additional level of control over schedules.
3.9 Running a Custom or Third-Party Application

To run a custom or third-party application, you define an Applications Manager interface script and matching program type.

When you define a job to run a program or script, you assign it an Applications Manager program type. A program type is an Applications Manager object that calls an interface script. The interface script provides the bridge between Applications Manager and the target program. The script:

• Builds the command that executes the program.
• Passes any parameters required to run the program.
• Detects errors generated by the program.
• Registers the output generated by the program so it can be printed by Applications Manager and viewed online through the Applications Manager client.
• Terminates the program.

Figure A shows an example of an Applications Manager job using an INVENT program type. The INVENT program type calls the INVENT interface script, which in turn runs the XYZ task in the Inventory custom application.

Applications Manager ships with, or has available as add-ons, program types and their matching interface scripts to run some of the more common programs including:

• Java programs
• SCT Banner
• COBOL
• UNIX and Windows shell scripts
• SQL*Plus programs
• Oracle
• PeopleSoft

If you want to run a custom application, or a third-party software program, you must write an Applications Manager interface script. The advantage of writing an interface script is that once it is written, you can use it to run an unlimited number of tasks in the target application or program. This is in keeping with the Applications Manager object-oriented approach to development.

The Development Guide documents how to create program type interface scripts. Applications Manager also offers consulting services to create the scripts.
Sample UNIX Program Type Script

Below is a listing of a sample EXEC program type script used to run UNIX shell scripts. The line numbers have been added for reference and do not appear in the actual script.

```bash
1 : #!/bin/sh
2  #copyright 2009 by UC4 Software, Inc.
3  # $Header:
4     /isa/devel/soport/so/dev/sostage/RCS/EXEC~EXECS,v
5     1.2 2004/02/24 19:06:46 billw Exp $
6  arg="$program `SQLOPER_HOME/exec/ONELINE $par`"
7  eval $arg
8  err=$?
9  if [ -f $file ]; then
10     $AW_HOME/exec/FILESIZE $file $err
11     err=$?
12  fi
13  if [ -f $OUTPUT/$file ]; then
14     file=$OUTPUT/$file;export file
15     $AW_HOME/exec/FILESIZE $file $err
16     err=$?
17  fi
18  exit $err
```

The table below lists the key functions a program type script must perform, and the corresponding lines in the EXEC program.

<table>
<thead>
<tr>
<th>Function</th>
<th>Line(s)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Program execution</td>
<td>6</td>
<td>Accomplished with the <code>eval</code> command. Note that <code>arg</code> includes the <code>$program</code> variable.</td>
</tr>
<tr>
<td>Parameter passing</td>
<td>5</td>
<td>Accomplished with ONELINE and <code>$par</code>.</td>
</tr>
<tr>
<td>Error determination</td>
<td>7, 10, 15, 17</td>
<td>The code <code>err=$?</code> traps the exit status of the last command executed.</td>
</tr>
<tr>
<td>Output registration</td>
<td>9, 14</td>
<td>Accomplished by FILESIZE.</td>
</tr>
<tr>
<td>Debug/administration</td>
<td>...</td>
<td>Not present in this script.</td>
</tr>
<tr>
<td>Termination</td>
<td>17</td>
<td>Accomplished with <code>exit</code> command. <code>$err</code> traps exit code.</td>
</tr>
</tbody>
</table>
3.10 Getting Notified when a Task Fails

Applications Manager includes a notification object that alerts you to unusual task runs.

If you are an operations-intensive shop, you will be monitoring Applications Manager through the Explorer window. If you are more of a “lights out” shop, no one will be monitoring Applications Manager. You will want to be notified when a task does not complete as expected, or perhaps that a task has completed on time, letting you know that your batch production run is on schedule. Both types of notification are handled by the Applications Manager notification feature. You can receive notifications by email, page, or any other type of device.

You define notifications in Applications Manager, then assign them to process flow components, jobs, applications, and program types. Details from a sample notification definition are shown in Figure A.

![Figure A](image.png)

Figure A. You define notifications, then assign them to process flow components, jobs, applications, and program types.
Versatility

When you define a notification, you can enter multiple details covering a variety of conditions. For example, you can enter one detail that sends out an email when a task finishes. The message could read:

"Task <job name> finished on <date> at <time>."

where <job name>, <date>, and <time> are filled in for each particular task.

You could enter a second detail that sends out a pager message when a task fails. The message could read:

"<job name> <agent> failed <time>"

By using the variables in the messages, the notification object can apply to any task.

Assigning Notifications

After you have defined a notification, you can assign it to process flow components, jobs, applications, and program types. Being able to assign notification objects to applications and program types makes it easy to set up notifications for a whole class of jobs.
3.11 Detecting Failed Tasks by Scanning Output

Output scans are Applications Manager objects used to scan output for text strings that indicate if a task has failed or succeeded. They are assigned to jobs and program types. Each output scan includes one or more rules.

Some programs can complete, executing successfully, but not accomplish their intended work. For example, an Oracle report may execute correctly, but return bad data. The only way to tell if the report content is correct is to parse the report text. If the error occurs at the beginning of a process flow, all subsequent processing may be incorrect. The error may not be detected until the entire process flow is done processing, leaving no time to rerun the process flow within the processing batch window.

Output Scans

Output scans are Applications Manager objects used to scan output for text strings that indicate if a task has failed or succeeded. They are assigned to jobs and program types. A rule from an example output scan is shown in Figure A.

Each output scan includes one or more rules. To use an output scan, you:

- Define the output scan object.
- Add rules to the output scan.
- Assign the output scan to one or more jobs and program types.

![Figure A. Add rules to create an output scan.](image-url)
4

Operations

4.1 Overview of Operations in Applications Manager .. 62
4.2 Monitoring the System .. 64
4.3 Finding Out Which Tasks Will Run During Your Shift ... 66
4.4 Troubleshooting Failed Tasks .. 68
4.5 Handling Task Exceptions .. 70
4.6 Taking Actions on Tasks .. 72
4.7 Viewing and Editing Task Details ... 74
4.8 Running Tasks Outside the Batch Cycle ... 76
4.9 Viewing and Printing Task Output .. 78
4.10 Controlling Task Priority and Load on the System ... 80
4.11 Preventing Applications Manager from Launching Tasks 82
4.12 Special Features of the Optional Graphical Analysis Package 84
4.1 Overview of Operations in Applications Manager

As an operator, you will monitor tasks as they run through Applications Manager. Applications Manager provides robust operations tools through the Explorer window. From Explorer, you can:

- Monitor the system.
- Run tasks on an as-needed basis.
- Find out what tasks will run during your shift.
- Troubleshoot tasks.
- Take actions on tasks.
- Handle exceptions to normal processing.
- View and print task output.
- Control load on the system.
- Prevent Applications Manager from launching tasks.

In addition to the standard features in Explorer, the optional Graphical Analysis Package adds Gantt charts for monitoring and managing tasks.
Chapter 4: Operations

4.2 Monitoring the System

You monitor the Applications Manager system using the Explorer window. The Explorer window includes a status bar which tells you if a task or process has failed. Several features of the Explorer window help you find failed tasks quickly.

As an operator, one of your key responsibilities will be to monitor the tasks running through Applications Manager. You monitor the Applications Manager system using the Explorer window shown in Figure A.

![Figure A. The Explorer window](https://via.placeholder.com/150)

The Explorer window includes three panes and a status bar. The pane on the left displays a navigational tree. The item you select in the navigational tree determines what is displayed in the top right pane of the window. The bottom right pane always displays the History.

The Backlog and History

When a task is submitted in Applications Manager, it is sent to the Backlog. Tasks remain in the Backlog until they complete successfully or are deleted. Selecting Backlog from the navigational tree displays all tasks in the Backlog.

When a task completes executing, Applications Manager removes it from the Backlog and writes a record to the History. Applications Manager also writes records to the History when tasks are killed or when they fail with a status such as ABORTED.
Taking the Pulse of the System

The status bar runs across the bottom of the Explorer window and provides status at a glance. Its color reflects the most severe status of the Applications Manager automation engine and agents, and the tasks running in the Backlog. The status bar colors have the following meaning:

<table>
<thead>
<tr>
<th>Color</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green</td>
<td>All tasks, automation engines, and agents are running satisfactorily.</td>
</tr>
<tr>
<td>Yellow</td>
<td>One or more tasks are on hold. Note: If there are aborted tasks and tasks on hold, the aborted tasks take precedence and the status bar will be red.</td>
</tr>
<tr>
<td>Red</td>
<td>One or more tasks have aborted, or the automation engine or an agent has a BUSY or TROUBLE status.</td>
</tr>
</tbody>
</table>

When the Explorer window is minimized, the button on the taskbar uses the same color scheme.

Using the Explorer Tree Icons

The navigation pane on the left side of the window provides a tree structure with selectable object icons. When you select an icon, Applications Manager displays the matching information in the top right pane of the window. The pane can show:

- The Backlog (tasks waiting to be processed).
- A filtered list of tasks in the Backlog.
- A summary of objects selected in the object tree.
- Tasks in a particular process flow.

Viewing Components in a Process Flow

The Explorer tree displays process flow components alphabetically to help you find them. When you select a process flow in the Explorer tree, those same components are displayed in the top right Explorer pane according to your Backlog search criteria. The default sort method is by task status. To view a flow chart of the process flow, right-click the process flow icon and select Predecessors.

Sorting Columns

You can sort any of the columns in the Explorer window to help you find tasks. For example, you can click on the Status column header in the Backlog to display three different sort orders: ascending (alphanumeric), descending (alphanumeric), and severity of status. When you sort tasks by severity of status, Applications Manager lists the most severe task statuses first.
4.3 Finding Out Which Tasks Will Run During Your Shift

With the forecast feature you can view a list of scheduled jobs and process flows.

If you need to see a list of scheduled tasks, the **Forecast** window shows them to you. Data is loaded into the **Forecast** window by running an Applications Manager job called FORECAST. The FORECAST job is usually run with a schedule, but can be requested to show recent updates.

Each scheduled job/process flow includes the start date and time and the job or process flow’s name. Process flows also include a key icon used to expand/collapse them. To create a basic run book, you can print the current view of the **Forecast** window.

Production Schedule

If the forecast does not provide enough detail, you can run a Production Schedule report. Part of a sample Production Schedule report is shown below.

```
Skip {Process Flow}Report Name
---- --------------------------------------------------------
Saturday Feb 23 2002 00:00
    {SYSTEM}Saturday Feb 23 2002 00:00
    {SYSTEM}DELDEFAULT
NDOW {SYSTEM}HISTORY_PURGE

Monday Feb 25 2002 00:00
    {SALES_REPORTS}Monday FEB 25 2002 00:30
    {SALES_REPORTS}REGION_A
        _B If CURRENT TIME > 06:00:00 then SKIP TASK
    {SALES_REPORTS}REGION_B
        _B If CHECK FILE NO /reports/region_b.dat
    {SALES_REPORTS}REGION_C
```
The report shows all tasks that are scheduled to run, tasks that will be skipped because of the
day of the week, and the conditions assigned to each component in a process flow.

Staging Tasks

A third way to find out which tasks are scheduled to run is to “stage” tasks. By default, the
Backlog pane in Explorer only shows tasks whose run date and time have been reached.
Therefore, a task that is scheduled to run an hour from now will not be displayed in the
Backlog. You can override this default behavior by staging tasks to the Backlog ahead of
schedule. To stage tasks, you run the STAGING job. Whether or not you use the staging feature
will depend on how your operations group functions.

If you are strictly a lights out shop, there is little need to stage tasks. You would not schedule
the STAGING job. In the rare cases when you need to make changes to a task, you would run
the STAGING job ad hoc for that task only.

If you are an operations-intensive shop, you may want to stage tasks on regular basis by
scheduling the STAGING job. You can create a schedule that meets your operations
requirements. For example, you could stage all tasks scheduled to run over the next 12 hours.
4.4 Troubleshooting Failed Tasks

Applications Manager provides tools for troubleshooting failed tasks.

If a task fails, you need to respond quickly, correct the problem, and get processing back on track. Applications Manager displays failed tasks at the top of the Backlog pane in Explorer, places a red “X” over the Backlog icon in the navigation tree, and turns the status bar red.

Troubleshooting Failed Tasks

In Applications Manager, a failed task is usually assigned an ABORTED status. It is displayed in red and brought to the top of the Backlog display. Applications Manager captures the system file generated by the aborted task and makes it available for viewing online. The system file is an excellent place to start troubleshooting. Along with runtime information and parameters passed to the task, the file includes error messages. A sample system file is shown in Figure B.

To view system files, you right click the task in the Backlog or History, select Output, and select the system file. Applications Manager displays the file in the Applications Manager file viewer. From the viewer, you can print the file.

You can also view task details by right-clicking the task in the Backlog or History and selecting Task Details. Task details show you various Applications Manager settings associated with a task. From a task’s details you can view the standard out file for a failed task to help determine what went wrong.
Getting More Detail with the Debug Utilities

If the system log does not provide enough information to solve the problem, you can use the Applications Manager debug utilities. These give detailed information about every action taken by the system. If you find that you need to use the debug utilities, you should contact UC4 Technical Support.
4.5 Handling Task Exceptions

To handle exceptions, you stage the task in question, then make changes to it from the Backlog.

Even in the most automated shops, there will be exceptions that must be handled. In Applications Manager, you handle exceptions by staging the task to the Backlog in Explorer, then making changes to the task.

In Applications Manager, we define exceptions as any manual actions taken outside the normal batch cycle. They include the following:

- Deleting a task in a process flow on a particular day.
- Removing a check for a file on a task.
- Removing a task’s predecessor requirements.
- Changing a task’s database login.
- Changing a task’s prompt values.

Staging a Task

In normal operations, Applications Manager does not place a task in the Backlog until its scheduled run time. For example, if a task is scheduled to run at 1:00 A.M., it will not show up in the Backlog until 1:00 A.M. This can make it difficult to make changes to the task.

To get around this default behavior, you can stage the task. When you stage a task, Applications Manager places it in the Backlog at the bottom of the display with a DATE PENDING status. You can then make the required changes to the task. Taking actions on tasks is described in the next topic.

To stage a task, run the STAGING job from the Requests window. When you run the job, you can select the process flows and jobs you want to stage, and the number of hours in the future you want to stage.
4.6 Taking Actions on Tasks

You can delete, hold, kill, or restart tasks. If a task in the Backlog is waiting for one or more predecessors before it can run, you can remove the predecessor(s) to force it to run.

You can take actions on tasks in the Backlog. After an action is taken a task log is written to document the action.

Putting Tasks On Hold

If a task is in the Backlog but has not yet started, you can put it on hold. The task will remain in the Backlog with a status of HOLD until you reset it or delete it from the queue. If a task has started running, you cannot put it on hold. However, you can kill a running task.

Killing Tasks

If a task is running, you can kill it by selecting the task and using the Kill command. When you kill a task, it stays in the Backlog until you delete it, or reset it. When you kill a task, Applications Manager makes an entry in the History showing the task was killed.

Resubmitting Aborted, Killed and On Hold Tasks

If a task aborts and remains in the Backlog, is killed, or is put on hold, you can resubmit it directly from the Explorer window. Before restarting a task, you can review its parameters, prompts, and conditions, and correct any problems. When you restart an aborted task, its status changes to LAUNCHED. As soon as a thread becomes available in the queue, the status changes to QUEUED.
Deleting Tasks
If a task in the Backlog is in a non-running status, you can delete it. For example, tasks with a status of SELF WAIT, ABORTED or KILLED can be deleted. When you have deleted a task, you cannot reset it directly from the Explorer window.

Removing All Predecessors for Tasks
If a task in the Backlog is waiting for one or more a predecessors before it can run, you can remove the predecessor(s) to force it to run.
4.7 Viewing and Editing Task Details

You can view and edit task details for non-running tasks in the Backlog.

As you monitor tasks, troubleshoot failed tasks, and handle exceptions, you may find it useful to view detailed information about a task. You can view all task details online by right-clicking a task in the Backlog (or History), and selecting Task Details. Applications Manager displays the window shown in Figure A with tabs to select the information you want to view.

Editing Details for Tasks in the Backlog

You can view and edit the task details on the various tabs of any non-running task in the Backlog from the Task Details window. When you edit a task in the Backlog, you are editing that run of the task only. You are not editing the job’s definition.

Editing Task Details for Tasks not Yet in the Backlog

If a task is scheduled to run at a later time, you can stage it so it is put into the Backlog. Once a task is staged you can view and edit its task details.
Entering Comments

When you take an action on a task in the Backlog, a comment is automatically created by Applications Manager. If you wish to include additional information, you can include your own comments to provide relevant information about the processing of a task and why you made changes to the task.

![Figure B. View or add current comments for a task on the Comments tab.](image-url)
4.8 Running Tasks Outside the Batch Cycle

You can run individual tasks or process flows from Applications Manager on an as needed basis. When requesting jobs and process flows, you can set various options to control how they run.

When you need to run a task outside of the batch cycle, or you need to run a task during the development cycle to test it, you can request the task from the Requests and Submit windows shown in Figure A. Requesting a task manually has no impact on the regularly scheduled running of the task.

![Figure A. The Requests and Submit windows](image)

Passing Values to Parameters in Programs or Scripts

If a job or process flow includes prompts that allow you to pass values to parameters in programs or scripts, you can set their values in the Submit window.

Post-Dating Requests

If you want to run a task at a later time, you can post-date its start date and time.
4.9 Viewing and Printing Task Output

After a task completes running, you can view, print, or email its output files.

If a task generates output files such as a report, you can view the report online from Applications Manager. For operations, this can be useful for confirming that the report format is correct or when you are troubleshooting a task. Likewise, developers can check report output during development without having to physically print the report.

Figure A. View, print, and email output files from Explorer

If end-users submit ad hoc reports, they too can view the output files online, and print or email them. Many companies use the online viewing feature to replace physical distribution of reports.
How to View Reports

Viewing reports online is as easy as right clicking the task in the History and selecting Output Files. You then can select the report file or the system file and display it in the File Viewer window as shown in Figure A.

Viewing Output in Other Applications

If a task generates output in a format specific to an application such as Microsoft Word or Excel, you can configure Applications Manager to open the file in that application.
4.10 Controlling Task Priority and Load on the System

Queues control the flow of tasks through Applications Manager. You use Applications Manager to level task loads by setting the maximum number of threads for a queue.

Balancing system demands and system resources is always an ongoing battle for IT. This has become even more challenging with the increasing demand from Web-based online applications that produce activity spikes at different times during the day. Applications Manager helps you manage the load on your system with queues and priorities.

Controlling Machine Workload

All tasks must pass through an Applications Manager queue to be executed. The main function of a queue is to limit the maximum number of concurrently running tasks. For example, assume a system runs best when no more than 100 tasks are running at the same time. If left unchecked, far more than 100 tasks will run between 7:00 A.M. and 5:00 P.M. By setting the queue limits to a total number of 100 concurrent tasks, you can level the load and still execute all tasks within a timely manner without overloading the system.

You can define as many queues as needed to manage the load on your system. For example, you may define:

- A batch queue that accommodates your nightly batch run.
- A high priority express queue that handles management report requests.
- A low priority queue that handles field report requests that are not urgent.

Setting Task and Queue Priority

When you define a task, you can assign it a priority. Applications Manager uses the priority setting to determine which tasks in a queue should be executed first.
Likewise, you can assign priorities to queues. Tasks in a higher priority queue will be executed before tasks in a lower priority queue. To ensure that tasks in a low priority queue will not be shut out completely, you can reserve threads on a queue.

Do You Need to Worry about Queues?

Whether you need to be concerned about queues and priorities depends on the size of your operation. If you are a small shop running a couple of dozen tasks a day, one queue may be all you need. On the other hand, if you are a large shop running several hundred or several thousand tasks a day, you should spend time determining your system requirements and defining queues and priorities. The goal is to maximize use of your computing resources without overloading them, and to ensure that you meet your service level agreements.
4.11 Preventing Applications Manager from Launching Tasks

You can put all task processing on a machine on hold by idling its agent or put all tasks in a queue on hold by inactivating the queue.

If you need to stop processing tasks, you have several options in Applications Manager.

- If you need to stop processing all tasks, you can idle the Applications Manager automation engine.
- If you need to stop processing tasks on a single agent, you can idle the agent.
- If you need to stop processing tasks through a particular queue, you can inactivate the queue.

You can easily idle an automation engine or agent, or inactivate a queue from the **Explorer** window. Figure A shows an agent being idled. Figure B shows a queue being inactivated.

Figure A. To prevent Applications Manager from running tasks through an agent, idle the agent.

When you idle an automation engine or agent, or inactivate a queue, currently running tasks will complete, but any tasks waiting will not start.
Resuming an Automation Engine or Agent

If you idle an automation engine or agent for a period of time, then bring it back online, Applications Manager will process one instance of each task that was scheduled to run during the idled time. For example, assume a task was scheduled to run every 15 minutes, and the agent was idled for one hour. Applications Manager will run the task once, not four times, then resume the regular schedule.

Activating Queues

If a queue is inactive, Applications Manager will still submit scheduled tasks to the queue but they will have a status of QUEUE WAIT. When you reactivate the queue, Applications Manager will process the tasks based on their priority settings.
4.12 Special Features of the Optional Graphical Analysis Package

Your license key determines whether the add-on features of the Graphical Analysis Package are included with your Applications Manager automation engine/agent instance.

The Graphical Analysis Package adds a number of graphical displays to Applications Manager. Your license key determines whether the add-on features are included with your Applications Manager automation engine/agent instance. Each of the features is described below.

Backlog Gantt View

The Backlog Gantt View displays the contents of the Backlog in a real-time Gantt chart format. The chart shows you whether you are ahead of or behind schedule. You can take actions on tasks or view/edit their task details.

History Gantt View

The History Gantt View displays the components of a process flow in the History and how they executed. This view is similar to the Backlog Gantt View.

Graphical Forecast

The Graphical Forecast displays scheduled jobs and process flows in a Gantt chart format. The chart looks very much like the Backlog Gantt View.

Dashboard

The Dashboard displays information about system performance as shown in Figure B. The Dashboard includes the following gauges:

- **Backlog Distribution**: Displays the percentage of tasks in the Backlog by status.
- **Workload Balancing**: Displays the percentage of running tasks by agent.
- **Progress of Day**: Displays the number of tasks scheduled for the day and the number that have completed.
- **Agent Loading**: Displays the total thread capacity and thread capacity used for each agent.
- **Daily Activity**: Displays the maximum number of tasks running each hour of the day.
- **Queue Loading**: Displays number of tasks in each queue.
Process Flow Gantt View

The Process Flow Gantt View displays the contents of a process flow in a Gantt chart format. The view is similar to the Backlog Gantt View.

Process Flow Simulation

After you have created a process flow, you can check to see if the components will execute in the correct order by running a process flow simulation. When you run a simulation, Applications Manager steps through the process flow using the predecessor links. You can run a simulation in Fast or Slow mode. To enhance the simulation, you can set individual components to fail during the simulation.

Upgrading to the Graphical Analysis Package

If you currently do not have the Graphical Analysis Package, you can get information about upgrading by contacting your Applications Manager account representative or UC4 Support.

Custom Report Writer

The Graphical Analysis Package includes specialized operations reports and a custom report writer. You can use the report writer to run reports against the Applications Manager database, or any other database in your enterprise. The reports can be viewed online, or sent to an output device.